Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Immunol ; 2022 Oct 14.
Article in English | MEDLINE | ID: covidwho-2080591

ABSTRACT

Although the immunological memory produced by BNT162b2 vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been well studied and established, further information using different racial cohorts is necessary to understand the overall immunological response to vaccination. We evaluated memory B and T cell responses to the severe acute respiratory syndrome coronavirus 2 spike protein before and after the third booster using a Japanese cohort. Although the Ab titer against the spike receptor-binding domain (RBD) decreased significantly 8 mo after the second vaccination, the number of memory B cells continued to increase, whereas the number of memory T cells decreased slowly. Memory B and T cells from unvaccinated infected patients showed similar kinetics. After the third vaccination, the Ab titer increased to the level of the second vaccination, and memory B cells increased at significantly higher levels before the booster, whereas memory T cells recovered close to the second vaccination levels. In memory T cells, the frequency of CXCR5+CXCR3+CCR6- circulating follicular Th1 was positively correlated with RBD-specific Ab-secreting B cells. For the response to variant RBDs, although 60-80% of memory B cells could bind to the omicron RBD, their avidity was low, whereas memory T cells show an equal response to the omicron spike. Thus, the persistent presence of memory B and T cells will quickly upregulate Ab production and T cell responses after omicron strain infection, which prevents severe illness and death due to coronavirus disease 2019.

2.
Biochem Soc Trans ; 49(6): 2879-2890, 2021 12 17.
Article in English | MEDLINE | ID: covidwho-1545661

ABSTRACT

The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the coronavirus disease (COVID-19) pandemic. As of August 2021, more than 200 million people have been infected with the virus and 4.3 million have lost their lives. Various monoclonal antibodies of human origin that neutralize the SARS-CoV-2 infection have been isolated from convalescent patients for therapeutic and prophylactic purposes. Several vaccines have been developed to restrict the spread of the virus and have been rapidly administered. However, the rollout of vaccines has coincided with the spread of variants of concern. Emerging variants of SARS-CoV-2 present new challenges for therapeutic antibodies and threaten the efficacy of current vaccines. Here, we review the problems faced by neutralizing antibodies and vaccines in the midst of the increasing spread of mutant viruses.


Subject(s)
COVID-19/immunology , SARS-CoV-2/immunology , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/immunology , Antibodies, Viral/therapeutic use , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , COVID-19 Vaccines/therapeutic use , Humans , Pandemics/prevention & control , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/immunology
3.
J Biol Chem ; 296: 100346, 2021.
Article in English | MEDLINE | ID: covidwho-1056842

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has developed into a global pandemic since its first outbreak in the winter of 2019. An extensive investigation of SARS-CoV-2 is critical for disease control. Various recombinant monoclonal antibodies of human origin that neutralize SARS-CoV-2 infection have been isolated from convalescent patients and will be applied as therapies and prophylaxis. However, the need for dedicated monoclonal antibodies suitable for molecular pathology research is not fully addressed. Here, we produced six mouse anti-SARS-CoV-2 spike monoclonal antibodies that not only exhibit robust performance in immunoassays including western blotting, ELISA, immunofluorescence, and immunoprecipitation, but also demonstrate neutralizing activity against SARS-CoV-2 infection to VeroE6/TMPRSS2 cells. Due to their mouse origin, our monoclonal antibodies are compatible with the experimental immunoassay setups commonly used in basic molecular biology research laboratories, providing a useful tool for future research. Furthermore, in the hope of applying the antibodies of clinical setting, we determined the variable regions of the antibodies and used them to produce recombinant human/mouse chimeric antibodies.


Subject(s)
Antibodies, Monoclonal/biosynthesis , Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , COVID-19/prevention & control , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/isolation & purification , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/isolation & purification , Antibodies, Viral/chemistry , Antibodies, Viral/isolation & purification , Binding Sites , COVID-19/immunology , COVID-19/virology , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Mice , Neutralization Tests , Protein Binding , Protein Interaction Domains and Motifs , Protein Subunits/administration & dosage , Protein Subunits/genetics , Protein Subunits/immunology , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/administration & dosage , Spike Glycoprotein, Coronavirus/immunology , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL